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Abstract--The objective of this paper is to investigate natural convection driven by two buoyancy sources, 
such as heat and mass, in vertical boundary layers. Starting from the integral equations and using scale 
analysis, we derive the different asymptotic flow regimes encountered with different buoyancy forces and 
diffusion coefficients. Each type of flow is characterized by a set of scaling relations yielding the velocity, 
temperature and concentration distributions inside the fluid, and the heat and mass transfer coefficients. 
All our results are perfectly corroborated by numerical investigations in a wide range of parameters. 
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1. INTRODUCTION 

Double-diffusive convection takes place in fluids 
where two components with different diffusivities 
(heat, solute concentration or phase compositions) 
act in conjunction to create buoyancy forces driving 
the fluid upwards or downwards [1]. Such double- 
diffusive processes occur in many fields, including 
solid-state physics [2] (solidification of binary alloy 
and crystal growth), oceanography [3] (melting and 
cooling near a vertical ice surface), geophysics (dis- 
persion of dissolved materials or particulate matter in 
flows), and others. Because of the coupling between 
the velocity field and the diffusive scalar fields, double- 
diffusive convection is more complex than the con- 
vection associated with a single diffusive scalar, and 
many different behaviours may be expected. 

The present work is concerned with natural con- 
vection along a vertical side wall with imposed hori- 
zontal temperature and concentration gradients. Since 
this problem has attracted much attention [4], it is 
worth beginning by a short review of the main results 
which can be found in the literature. Experimentally, 
only few studies have been devoted to double-diffusive 
convection with imposed horizontal temperature and 
concentration gradients along vertical walls [5, 6] or 
in enclosures [7, 8]. The available experimental results 
have focused on the measurement of the heat and 
mass transfers at the wall and they are restricted to a 
limited range of physical parameters. Theoretically, 
the governing equations of double diffusion con- 
vection are the classical conservation equations for 
mass, momentum, heat and chemical species [9]. 
While these are easy to formulate, the existence of two 
buoyancy forces results in a complicated nonlinear 
partial derivatives problem. Most of the methods 
developed in the field of boundary-layer theory [10] 
have been applied to double-diffusive situations. 

Among them, the search for similarity solutions 
attracted much attention, mainly because similarity 
formulation transforms the transport equations into 
a set of differential equations which can be solved 
numerically for different values of the parameters. The 
existence of similar solutions is now well documented 
and comprehensive reviews are available in the litera- 
ture [9, 11, 12]. Other numerical investigations have 
solved the basic flow equations by finite-difference [13, 
14]. In all these approaches, the difficulty resides in 
getting a physical characterization of the different flow 
configurations and to achieve valuable predictions for 
the temperature, concentration and velocity dis- 
tributions over a wide range of situations. Analytical 
methods like integral methods [15, 16] and asymptotic 
expansions [17, 18] have also been used to obtain 
transport properties as a function of the different par- 
ameters involved. The results contain evidence of 
many different and complicated flows, but the pre- 
dictions are scarce and restricted to some specific 
cases. Recently, scale analysis was applied to double 
diffusive convection in order to determine the heat 
and mass transfers at the wall [19-22]. The different 
terms in the equations of motions were estimated from 
simple order of magnitude arguments and some domi- 
nant balances between them were then considered. 
However, the method, which was based on single- 
scale analysis, failed to take into account the existence 
of multiple length scales coupled together and, at the 
present moment, no satisfactory predictions cover the 
whole range of parameters. 

In this paper, we present a new method that pro- 
vides a physical understanding of double-diffusive 
boundary layers and allows us to predict exhaustively 
the different asymptotic behaviours that can be 
observed when the relevant parameters are varied. 
This method combines the use of the integral bound- 
ary-layer equations and scaling analysis. Recently, we 

3899 



3900 A. MONGRUEL el a/. 

C chemical species concentration 
D chemical species diffusivity 
g acceleration of gravity 
Le Lewis number e/D 
N buoyancy ratio tic AC/flT A T 
Nu Nusselt number 
Pr Prandtl number v,'z~ 
Ras solutal Rayleigh number gfic k C v [  Dv 
Ra, thermal Rayleigh number gflTAT.v~/~v 
Sc Schmidt number v/D 
Sit Sherwood number 
T temperature 
/G values of  the streamwise velocity at 6( 
Un, value of  the streamwise velocity at 3,,, 
/_/~ value of the streamwise velocity at 3~ 
{,", value of  the streamwise velocity at ~'J, 
u , /  streamwise and spanwise components 

of the fluid velocity 
x, .v Cartesian coordinates. 

Greek symbols 
thermal diffusivity of the fluid 

fiT coefficient of  thermal expansion 
(-l /p)(@/(~'T)p 

tic coefficient of  concentration expansion 
( -- 1/p)(Pp/?C)p 

,' dimensionless concentration 
( C -  C,),.'AC 

NOMENCLATURE 

7'(0) 

D 

wall derivative of  dimensionless 
concentration 
velocity boundary-layer thickness 
concentration boundary layer 
thickness 
distance to the wall where the velocity 
is maximum 
thermal boundary layer thickness 
distance to the wall where viscous 
friction becomes negligible 
compared to inertia 

A(" concentration difference between the 
wall and infinity ( G , - C , )  

A T temperature difference between the 
wall and infinity (T , , -  T~ ) 

q similarity variable 
0 dimensionless temperature 

(T-  T, )/AT 
0'(0) wall derivative o f  dimensionless 

temperature 
v kinematic viscosity 
p density of  fluid 
q) dimensionless stream function 
~P stream function. 

Subscripts 
0 condition at the wall 

condition at infinity. 

successfully applied this idea to double-diffusive con- 
vection in a fluid-filled porous medium [23]. When 
considering a fluid, as we do here, the higher degree 
of  complexity gives rise to many new and interesting 
situations. 

The paper is organized as follows. In Section 2, we 
briefly recall the boundary-layer equations for double- 
diffusive convection near a vertical wall and we pre- 
sent our scaling method : we also introduce similarity 
equations and we describe the finite-difference method 
used for solving. In Sections 3 and 4, we focus on the 
two asymptotic cases which are of  physical relevance. 
Our analysis gives evidence for many different types 
of  flows, each of them being characterized by a par- 
ticular set of  scaling relations. In Section 5. we discuss 
our results in relation to similarity solutions obtained 
numerically over a wide range of  parameters. 

2. FORMULATION AND SCALE ANALYSIS 

In this paper, we study buoyancy driven flows near 
an infinitely high half-plate held vertically in an infi- 
nite fluid (Fig. 1). The surface of  the wall is maintained 
at a fixed temperature To and a fixed concentration 
C0; the temperature and concentration at infinity are 
T,  and C , .  The horizontal gradients of  Tand ( ' inside 
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Fig. I. Schematic representation of the boundary-layer flow 
near a vertical wall in a fluid 11 << Pr << So). ($T and 6c 
are the thermal and solutal boundary layer thicknesses. 
The streamwise velocity is maximum at 6m and is zero 
beyond 3. Physically acceptable configurations must satisfy : 

6c ~< ~T ~< 6. 
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the fluid are responsible for density differences which 
drive the fluid along the wall. The basic governing 
equations are the conservation of mass, momentum, 
heat and chemical species. We assume that the density 
of the fluid is : p = p~[1 - f iT(T- -  T+,~)-- t i c ( C -  C~)]. 
With use of the Boussinesq hypothesis and of the 
boundary-layer approximation, the equations of 
motion read [9, 19] 

~gu ~v 
- -  - -  = 0 ( l a )  
~x + c~y 

Table 1. Summary of the different scales involved in the 
analysis of pure thermal convection at low and high Prandtl 
numbers (ref. [19], Chap. 4). Since the length scales are 
all proportional to x[Rax(X)] ~,'4 and the velocity scales to 
~[Ra~(x)]V2/x, we have omitted these factors and the table 

gives only the multiplicative coefficients 

am Um a 

Pr << 1 ~ Pr TM Pr 1'2 Pr v4 
Pr >> 1 ~ 1 1 Pr 1:2 

a 0  v = 6m;  6 T = 6 .  b6  v = 0 ;  6 T = 0 m. 

8u ?u 82u 
U?~xx + v 8)- Z = v0 ~ +gfiT(T-- T~) + g t i c ( C -  C~) 

(lb) 

6~T 8T 632T 
u ~ + ~ N = ~  

. 8y 2 
(lc) 

8C 8C 82C 

~xx  + vUf  = Z~ ay ~ 
(ld) 

u(0)  = v (0)  = u ( ~ )  = v ( ~ )  = 0 ; T(0)  = To ; 

C ( 0 )  = C0 ; 7"(oo) = ~ +  ; C ( ~ )  = C ~ .  

(le) 

The amplitude and the direction of thermal and 
solutal forces in equation (lb) can be measured by 
the buoyancy ratio N. When N = 0 and N = ~ ,  we 
recover the case where a single scalar is diffusing; 
when N < 0, thermal and solutal forces drive the flow 
in opposite directions and the flow field can reverse ; 
when N > 0, buoyancy forces are cooperating and 
drive the flow in the same direction. In the present 
study, the flows are laminar and N >~ O. 

The description of the distributions of temperature, 
concentration and velocity in the fluid involves several 
horizontal length scales which are sketched in Fig. 1. 
T and C decrease from their values on the wall to their 
values at infinity over the characteristic length scales 
6T(X) and 6c(X) ; the velocity takes the values UT and 
Uc, respectively in 6v and 6c. The streamwise velocity 
u increases from 0 on the wall to its maximum value 
Um at 6m(X), then decreases and vanishes at 6(x). We 
also introduce 6v(X) which characterizes the distance 
where viscous friction becomes negligible in com- 
parison with inertia. 

The aim of this paper is to predict all the solutions 
of the set of equations (1) when N and the diffusion 
coefficients are varied. It will be convenient to use the 
parameters Pr, Sc  and Le.  Their values depend on the 
nature of the fluid and on the physical mechanisms 
governing the diffusion of the heat and chemical spec- 
ies. In gases, we have v -~ ~ -~ D, leading to Pr, Sc  and 
Le  being of the order of 1. In most liquids, the Prandtl 
and Schmidt numbers are greater than unity, except 
in molten metals, where the Prandtl number is less 

than unity. Usually, heat diffusion is more efficient 
than mass diffusion, yielding a Lewis number greater 
than 1. Typical values of Le  in common solutions 
are about 100; but Le  can be very large in complex 
solutions containing macromolecules or colloidal dis- 
persions. Since Pr, Sc  and Le are related through 
Le  = Sc /Pr ,  we see that only two physical cases fit 
the requirement Le > 1 : Pr  < 1 < Sc  (molten metals) 
and 1 < Pr < Sc  (solutions). 

We first note that when Pr = Se, equations ( l a -  
e) reduce to those for a single buoyancy effect.This 
problem has been extensively analysed and it will not 
be treated here since the results are now classical (see 
for instance ref. [19], chap. 4). In Table 1, we just 
recall the properties of thermal convection at low and 
high Prandtl numbers which will be useful in the fol- 
lowing discussion. Only two horizontal length scales 
are involved, 6,, and 6, which define an inner and 
an outer sublayer; the velocity scale Um suffices to 
characterize the velocity field. When Pr 4: Sc,  the 
length scales 6x, 6 o  6m, 6 and 6v are in general different 
and there exist different velocity scales, Uc, UT, Urn, 
U+ ; as a consequence of these multiple scales, the flow 
along the wall splits into several sublayers, each with 
a characteristic thickness and a characteristic velocity 
scale. This precludes any straightforward estimate of 
the different terms appearing in the conservation 
equation from simple order of magnitude arguments, 
as it is done in pure thermal convection. 

Our scaling method proceeds as follows. First, we 
specify the different sublayers which are to be con- 
sidered and the relevant length and velocity scales. 
Then, we rewrite the conservation equations under 
their integral form, combining the incompressibility 
relation (la) with the three other equations and inte- 
grating across a volume control [Yl,Y2]. It is con- 
venient to express these equations in terms of the 
dimensionless temperature and concentration, 0 and 

7: 

f ~  d r +  u ( y 2 ) v ( v , )  - u ( v O v ( y ,  ) 
8(u 2) 

= tayl,2 ay],,) ,, (0 + N~) 
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f '~ C'(~u.~dv +r( v,)O( v~j_t,( v ~ 
( .V - . . . .  

j 7~i d v + r ( v ,  lT(v,) c(v, 
i ? -  . . . . .  

)0(y 

(YI,,J (2b) 

);.'(r~ 

I C~'' ?7 ( (2c) D 

In practice, we choose [y~,.v_,] so that .v~ and y_, 
coincide with the boundaries of  the sublayers, i.e. 0. 
6~, ~:i x, (~m, (~, or 13. Then. we estimate the orders of 
magnitude of  the terms appearing in system (2) taking 
lbr u, r, 0 and ~,, the characteristic values which are 
appropriate in [yj, y_~]. The same procedure is applied 
to the sublayers at hand and we get a system of non- 
linear algebraic equations whose unknowns are the 
relevant scales of  the problem. Considering the differ- 
ent possible leading-order balances in these equations 
and solving, we find out all the possible flow con- 
figurations when N, Pr and Sc are varied. In this 
method, the advantage of  starting from integral equa- 
tions is that each sublayer is analysed separately : the 
contributions of  the different terms appearing in the 
conservation equations are taken at the boundaries of  
the sublayer which preserves the coupling between the 
different sublayers. This method is applied to the study 
of  double-diffusive convection for 1 << Pr << Sc and 
Pr << I << Sc in Sections 3 and 4. 

To test the validity of  our results, we shall com- 
pare our predictions with similarity solutions of  the 
boundary-layer equations, in Section 5. Setting 
q = y[Rav(x)]l ~:x and ~01) = ~[Ral(x)]l 4@(r/I, we 
get [9] 

~ ' " +  3@q~"-2@'-" + (0+NT) = 0 (3aI 

0"+  3Pr@0' = 0 (3b) 

;'" + 3Sc@;" 0 (3c) 

0(0) = 7 ' ( 0 ) =  1 @(0) = ( t :  O(Cl~)=; , (~t  = 0 .  

(3d) 

We solve this system by finite-differences with an 
adaptive stepsize procedure to account for the fact 
that 0 and 7 decrease over very different length scales 
[24]. Near the wail, the stepsize Aq is very small (typi- 
cally A t / ~  10 3 when Le = 105), to achieve a good 
determination of  the thin concentration boundary- 
layer, and it increases steadily with q. Integration is 
performed over a finite segment [0, r/,,,,,~]. The bound- 
ary conditions are satisfied when the differences 
between the exact boundary conditions (3d) and the 
values calculated at q ..... are smaller than 10 ~'. Then. 
the length of  the segment of  integration, q~,,,,, is 
increased until the difference at any point between two 

successive solutions is smaller than 10 ~' (typically 
~1 ...... ~ 200 when Pr = 102). 

3. SCALE ANALYSIS OF DOUBLE-DIFFUSIVE 
CONVECTION FOR 1 << Pr << Sc 

In this section, we apply the scaling method pre- 
sented in the previous section to study double-diffus- 
ive convection in the asymptotic case 1 << Pr << So. 
We first note that some useful relations can be found 
between 6,,, & 6,, ~5~ and 6-1- prior to any calculation. 
We have 6, << (5T as a consequence of  Le >> 1. 
Secondly. on the basis of  the scaling of  pure thermal 
convection (Table I ), we argue that Pr >> I imply that 
~ << ~ and 6, = (5. If solutal convection were the only 
driving mechanics, the streamwise velocity would 
reach maximum at (~m = ~C, since Sc >> I (ref. [19], p. 
117). In the opposite case where thermal buoyancy 
works alone, we should have (3,,~ = gr- Therefore, the 
location of  ~5,,, results from a competit ion between 
solutal and thermal effects. Finally, we can divide 
the flow into several sublayers, each with a different 
combination of leading mechanisms : 

( 1 ) in [0, 6~], on the basis of  single diffusive convec- 
tion. the flow must be ruled by friction, solutal and 
thermal buoyancy, since Sc >> I : 

(2) in [6~,(~s], we cannot decide beforehand 
whether friction is balanced by advection or by ther- 
mal buoyancy;  in the following, we shall examine 
both possibilities ; 

(3) in [0v, 6], the terms to be retained are advection 
and friction, since Pr >> 1. 

Let us first consider that a balance between friction 
and thermal buoyancy holds in layer [6C, 6T]- Since 
advection is negligible below at, we anticipate that u 
reaches its maximum at 6,,~ = ~Sv. In addition, we 
assume that UT >> Uc or perhaps Ur ~ Uc. The vel- 
ocity scales are Uc in layer [0, 6c], and Us in [6c, 6s]. 
Expressing the conservation of  momentum, heat and 
chemical species, we get (see the Appendix) 

Uc ~/ , ' f i t  a ]'(,5. ' + N6¢) ~ (4a) 
V 

UL g[:l I A T  (0;r + N6g) (4b) 
~., 

UT ~ - (4c) 

D . v  

Uc ~ - -  (4d) 

Y.Y 

UT ~ - .  (4e) 

Let us solve system (4) analytically. This will lead 
us to introduce different asymptotic cases, each cor- 
responding to distinct flow properties. For  clarity, we 
shall summarize the scaling laws in Table 2 and we 
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Table 2. Summary of the different scales involved in double-diffusive convection when 1 << Pr << Sc. From Section 3, the 
length scales are all proportional to x[RaT(x)]- i,,4 and the velocity scales to ~[Rar(x)]l/2/x. For clarity we have omitted these 

factors and the table gives only the multiplicative coefficients 

6c Uc 6T UT fi, = 6 

Type 1 ~ prt;3Sc =3 
N << Pr ~;3Sc ~ 

Type 24 N I/4pr]/4Sc 1,4 
Pr 1"3Sc ]'3 << N << Pr ISc 

Type 38 
Pr ~Sc << N << Sc 

Type 4 ~ 
N>> Sc 

pr I,,3Sc- li3 1 1 p r  L ,2 

N t,2Pr]2Sc- I,'2 

- -  N t '4pr  1~4ScI4 NinprV2Sc 1,2 N 14prU4Scl'4 

a~m = 67; Urn = UT. b(~n, = ~T; Urn = UT = Uc. C•m = 6c; U m =  Uc. 

shall locate the different types of flows in the three- 
dimensional diagram (N, Pr, Sc) reproduced in Fig. 2. 
Equation (4a) splits into two parts depending on the 
value of N. 

N << 6T/6C. We neglect Nfc  on the right hand side 
of equation (4a), N6~, in equation (4b) since 
N6~, << 6T6c << 62, and we easily derive a set of  values 
for 6c, 6T, 6, Uc and UT, which is reported in Table 2. 
To establish the relevance of these scales, we check 
that ~c, 6T and 6 satisfy the inequality 6c << 6T << 3, 
that the flow in layer [6c, 6T] is well controlled by the 
interplay between thermal buoyancy and friction, and 
that we have Uc << UT. Finally N << 6T/6 c requires that 
N << Le ~/3. In the following, it will be convenient to 
use parameters Pr and Sc and to write N << Pr 1/3Sc1"3. 

These flows will be called flows of type 1 from now 
on. In the three-dimensional diagram (N, Pr, Sc) 
depicted in Fig. 2, flows of type 1 are located behind 
the surface N =  Pr-U3Scl/3; the different scaling 
relations are reported in Table 2. 

N>> 6T/6C, i.e. N>> Pr-I/3Scl/3. Uc results from 
solutal buoyancy in layer [0, 6T]. In equation (4a), we 

. / • •  (3) 

Fig. 2. Different asymptotic types of flow occurring as a 
function of parameters N. Pr and Sc when 1 << Pr << Sc. 

set 6T << N6c ; the form of equation (4b) leads us to 
consider separately two subcases depending on the 
relative values of N6~ and 62. When N6~ << 62, we get 
a set of solutions which characterise flows of type 2 
(Table 2). We check easily that UT is much larger than 
Uc and that viscous friction dominates over inertia as 
required; condit ion N62 << 62 requires that 
N << Pr-~Sc. In Fig. 2, flows of type 2 are located in 
the domain between N = Pr I/3SCU3 and N = Pr-~Sc. 
When N6~. >> 62v, i.e. N >> Pr-ISc, UT is of the same 
order of magnitude as Uc, but  the reasoning upon 
which system (4) was derived remains valid, provided 
that inertia is negligible compared with friction in 
layer [6c, fiT], which requires N << Sc. These solutions, 
which are valid for Pr-~Sc << N << Sc, characterize 
flows of type 3 (Table 2 and Fig. 2). 

When N >> Sc, the interplay between friction and 
thermal buoyancy is no longer appropriate in layer 
[6c, 6T], and system (4) fails. Therefore, we now con- 
sider that the flow in [6c, fiT] results from a competition 
between friction and inertia. Since advection restrains 
the flow above 6c, 6m must be equal to 6c. The flow in 
[0, 6c] is ruled by a balance between friction and solu- 
tal buoyancy;  in [6c, 6], it results from friction and 
inertia. Thermal effects are negligible and solutal con- 
vection works alone. The velocity field involves only 
two length scales, 6c and 6, and one velocity scale, Uc. 
These flows will be said to be of type 4. The analysis 
can be carried out just  as in single diffusive convection. 
Uc, 6c and 6 are obtained from Table 1, replacing Pr, 
c~ and RaT by Sc, D and Ras = RaTLeN. The con- 
servation of heat in [0, fiT], where the velocity scale is 
Uc, yields UC(~T/X "~ O~/6T, which gives a solution for 
fiT- Since Uc is the sole velocity scale, we must have : 
Uc/(g)-6c) ~ UT(f--fT), or UT ~ Uc. In Table 2, we 
see that flows of type 4 are characterized by the same 
scaling relations as type 3 flows, even though they 
result from different combinations of leading mech- 
anisms. 

Summarizing, we have derived the four types of 
flows which are expected in the asymptotic case 
1 << Pr << Sc. These flow configurations are the only 
asymptotic solutions that can be found and it is easily 
verified that all the assumptions upon which they have 
been established are satisfied. Inversely, any other 
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combination of  scales and leading mechanisms turns 
out to be inconsistent. It is worth noting that the 
length scales are all proportional  to x[RaT(x)] ~4 and 
the velocity scales to e[Ra-r(X)]~2/x which justifies the 
form of the similarity variable ~1 and that of  the stream 
function h u in the previous section. In Section 5, these 
results will be discussed in relation to the similarity 
solutions obtained numerically. 

4. SCALE A N A L Y S I S  OF DOUBLE DIFFUSIVE 

C O N V E C T I O N  FOR Pr << 1 << Sc 

This case is more complex than the previous one, 
yielding new modes of  interaction between thermal 
and solutal effects. Our scaling is based still on the 
existence of  the multiple length scales, 3,> & 3,, 3~. 
3c, which here verify 0 << 3( << 6, << 3 = ~ .  Indeed, 
Le >> I implies that 3 c << 3> while on the basis of 
thermal convection (Table 1). we infer from Pr << 1 
and Sc >> 1 that & << 3 = ~T and 6(, << 3,. Therefore, 
we have : 3 c << 3v << (5 = 3r and the flow along the wall 
splits into three distinct layers as a function of  the wall 
distance : 

(1) [0, 3(,] where the leading mechanisms are vis- 
cous friction, thermal and solutal buoyancy since 
So>> 1: 

(2) [5c, 3,.] where the leading mechanisms may be 
either friction and thermal buoyancy or friction and 
inert ia--these two physical situations will be exam- 
ined separately ; 

(3) [3,.,3] where the flow results from a balance 
between inertia and thermal buoyancy since Pr << 1. 

Let us first consider that the leading mechanisms in 
[6c, 3~] are friction and thermal buoyancy. Advection, 
which is responsible for the decrease of  momentum, 
only acts in layer [&, 6]. Therefore, we anticipate that 
the streamwise velocity necessarily reaches its 
maximum at y >~ i5, and then decreases : 3,,, - <~, and 
U,, = U,.. We also assume that U,. >> U( or possibly 
U, ~ Uc. Uc and U, are the velocity scales, respec- 
tively, in [0, 3c] and in [3c, 3~]. Once expressed in terms 
of  the suitable scales, equations (2a-c) yield (the cal- 
culations are detailed in the Appendix) : 

U( ~ grit AT(3 ' + N3c) 3(. (5a) 
I '  

amwise velocity will reach its maximum at y -~ 0c, so 
that 3m = 6(, and Um= Uc >> Uv. Uc and U, are the 
velocity scales in [0,6c] and in [6c, 5T]. The con- 
servation equations under their integrals forms give 
(see the Appendix) 

gl~, A 7" 
U( ~ (1 + N) 5~, (5"a) 

V 

U~ -- g/I-f AT.v (5'b) 

t,'c3, + U,O. = (5'c) 
3v 

D x  

t:', ~ 3~. (5'd) 

Y A 
Ut-~ . (5 'e l  

3~ 

We now solve these two sets of  equations beginning 
with system (5). From equation (5a), we distinguish 
two situations depending on the value of  N compared 
with the ratio 3,/5c. 

N << &/3c. Solving system (5) with U( 
g[4.rAT3,,3c/v, we derive a first set of  solutions for 
6c, U(, (5,, U, and 3 which is reported in Table 3. 
These scaling properties characterize a type of  flow, 
which for convenience will be said to be of  type 1. We 
check that U,. -- Um >> Uc and & << 6,. << 3. Inertia is 
of  the same order as friction, but this does not change 
the scaling. N << 3~/,~c translates into N << Sc~'3: in 
Fig. 3, flows of  type I occupy the domain located 
behind the surface N = Sc t~. 

N >>3~/'3c i.e, N >> Sc ~ 3. Uc is now imposed by solu- 
tal buoyancy:  Uc-~gfl l-kTN3~./v and system (5) 
admits new solutions. We check that friction and ther- 
mal buoyancy are the leading mechanisms within 

Pr 

U ,  - U (  ~ gfir A T  3~ (5b) 
Y 

U; ~ ~ g ~  zXT.v (5c) 

0L¥ 
U, ~ .... (5d) 

3~ 

O x  
U(. ~ - . (5el 

3~, 

When the flow in [6c, &] is governed by a balance 
between friction and inertia, we expect that the stre- 

o 
o 1 N-  

Fig. 3. Different asymptotic types of flow occurring as a 
function of parameters N, Pr and Sc when Pr << 1 << So. 
Note the continuity between this diagram and that in Fig. 2. 
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Table 3. Summary of the different scales involved in double-diffusive convection when Pr << 1 << Sc. From Section 4, the 
length scales are all proportional to x[Rax(x)] - 1/4 and the velocity scales to ~[Rav(x)]~/2/x; the table only gives the multiplicative 

coefficients 

6c Uc 6v U~ 6~ = 6 

Type 1 ~ pr~/4Sc v3 prl/2Sc-l/3 prl~4 Pr ~n P r  ~/4 
N << Sc 1'3 

Type 2" N I/4prV4Sc-V4 Nl/Zprl/2Sc -In - -  - -  
So I/3 << N << Sc 

Type 3 ~ - -  - -  N -  1/4pF1/4Sc1!4 - -  

Sc << N << Pr 2Sc 
Type 4 ~ . . . .  N-~'4pr ~'4Sc~ 4 

N >> Pr-ZSc 

a(~m = (~v; U m =  U~. bt~ m = ~c; U m =  f c .  

[6c, 6,.], as required if N and Sc  verify the additional 
requirement N << Sc.  Thus, we must consider sep- 
arately the two following possibilities. When 
Sc  1/3 << N << Sc,  we get flows of type 2 (Table 3). In 
Fig. 3, these flows are located in the domain between 
N = Sc  j/3 and N = Sc.  When N >> Sc,  the flow in layer 
[re, 6v] cannot  be dictated by a balance between fric- 
tion and thermal buoyancy and system (5) is no longer 
valid. 

When N >> Sc,  we consider that the leading mech- 
anisms are friction and inertia so that we have to solve 
system (5'). Since N >> Sc  >> 1, the right-hand side of 
(5'a) reduces to : Uc ~ g f l x A T N b ~ / v .  Equations (5'a), 
(5'b), (5'd) and (5'e) give directly Uc, 6o Uv and 6v. 
Equation (5'c) yields two different asymptotic behav- 
iours for 67, depending on which contribution to heat 
transfer predominates : 

(a') Ucrv << UvfT: the main contribution to heat 
transfer here comes from advection in [rv, fiT]- These 
flows are said to be of type 3 (Table 3). 

(b') Ucrv>> Uvfv: heat advection in [rc, tSv] 
prevails, yielding flows of type 4 (Table 3). 

We can easily verify that these two asymptotic solu- 
tions satisfy the different conditions upon which sys- 
tem (5') was established. The cross-over between types 
3 and 4 occurs for N = Pr  2Sc. In Fig. 3, flows of 
type 3 and 4 are located in front of the plane N = Sc 

on both sides of the surface N = P r -2Sc .  

5. DISCUSSION 

5.1. Velocity,  t empera ture  and  concentrat ion dis- 

tr ibutions 

We are now in a position to discuss the results of 
the asymptotic analyses reported in Section 3 and 4 in 
relation to similarity solutions obtained numerically 
over a wide range of parameters. Several common 
properties emerge from the scaling relations listed in 
Tables 2 and 3 and from the distributions of velocity, 
temperature and concentrat ion which are reported in 
Figs. 4 and 5. 

Let us begin with flows of type 1, F rom Tables 2 
and 3, we expect flows of type 1 to be heat driven. 
Indeed, the velocity and temperature fields vary as in 

pure thermal convection. The concentration fields are 
entirely determined by thermal effects and the solutal 
forces have no action on the flows. The problem 
involves only two length scales, namely fit and 6 when 
Pr  >> 1 or 6v and 6r when Pr  << 1. In Figs. 4a and 
5a, we checked that the streamwise velocity and the 
temperature coincide exactly with the velocity and the 
temperature in pure thermal convection at the same 
Prandtl  numbers. In the three-dimensional diagrams 
depicted in Figs. 2 and 3, this result is expressed by 
the fact that flows of type 1 are located in contiguous 
domains connected to each other through the plane 
Pr  = I. We emphasize that heat driven flows can be 
observed for N >> 1, i.e. they include flows where the 
amplitude of solutal forces dominates over that of  
thermal forces. 

Flows of type 2, 3 and 4 are driven by a combinat ion 
of thermal and solutal effects, except flows of type 
4 when Pr  >> 1 which are entirely mass driven. The 
velocity distributions involve three length scales : 6 c, 
6v and 6 when Pr >> 1, 3c, 6v and 6T when Pr  << 1. It 
is worth expressing 6c and Uc in terms of D, Ras  and 
Sc  instead of~, RaT, N ,  Pr  and Sc.  We see immediately 
that 6c ~ x[Ras(x)]  -I/4 and Uc ~ D x - I [ g a s ( x ) ]  -I/4 

scale as in pure solutal convection, reflecting the fact 
that the transport  of chemical species is now ruled by 
solutal convection only and that it is not  coupled with 
thermal convection. 

Let us first examine the type 2 flows. In Tables 2 
and 3, the different scales, 67, 6 and UT on the one 
hand, and 6v, 6v and Uv on the other hand, are clearly 
the same as in pure thermal convection. Therefore, we 
expect the fluid motion to be mass driven in [0, 6c] 
and heat driven in [6c, 6v]. This is perfectly cor- 
roborated by the computations. Indeed, in Figs. 4b 
and 5b, the streamwise velocities have the same vari- 
ations as in pure thermal convection, except near the 
wall where they are determined by solutal convection ; 
the temperature distributions coincide with those in 
pure thermal convection. As previously described, the 
fact that the type 2 flows for Pr  >> 1 and Pr  << 1 have 
common properties is reflected by their location in 
contiguous domains of the (N ,  Pr  Se)  diagrams rep- 
resented in Figs. 2 and 3. 

In types 3 and 4, the solutal forces are so large 
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scales as if  solutal convection were acting alone (Table 
1). We conclude that the fluid mot ion is mass driven 
in [0, 6c] and [fiT, f], but that in [6c, fiT] it is driven by 
a combinat ion of  thermal and solutal effects. This 
agrees with the results of  Fig. 4c where the velocity is 
mass driven near the wall, peaks on a flat plateau 
reflecting the fact that UT has the same order of  mag- 
nitude as Uc in the scale analysis, and then decreases 
to zero. The temperature boundary-layer thickness is 
shorter than in pure thermal convection because of  
the coupling between heat and mass convection. 
When Pr << 1, the flow properties are different. 
6v ~ x[Ras(x)]  1/45CI/2 scales as the velocity bound- 
ary-layer thickness 6 in pure solutal convection (Table 
1). This shows that the fluid mot ion switches from 
mass-driven convection to heat-driven convection at 
6~. The main contribution to heat transfer comes from 
advection in [6~, fiT], which is itself heat driven so 
that &T scales as in pure thermal convection. These 
predictions are in perfect agreement with Fig. 5c where 
the temperature distribution and the velocity above 6v 
are very close to the solutions expected for pure ther- 
mal convection. 

Lastly, flows of  type 4, which in Figs. 2 and 3 are 
located in contiguous regions separated by the plane 
Pr = 1, also resemble one another (Figs. 4d and 5d), 
except that the coupling between the thermal and solu- 
tal effects for Pr << 1 and Pr  >> 1 are somewhat differ- 
ent. When Pr >> 1, solutal convection works alone. 
Fluid motion is entirely mass driven ; the temperature 
field is determined by solutal effects only and it has 
no reverse action on the flow. When Pr  << 1, the vel- 
ocity field is mass driven in [0, 6~] and heat driven 
above 6~. Heat  transport, which arises mainly from 
advection in [3c, 3v], is coupled with solutal convec- 

tion, and the thermal boundary-layer thickness is 
much shorter than if thermal convection were working 
alone. 

5.2. H e a t  and  mass  transfer  
As a consequence of  the complex interaction 

between thermal and solutal forces, the cross-overs 
between these different flow types are not  trivial and 
cannot be found a priori  from simple order-of-mag- 
nitude arguments. For  instance, the transfer of  chemi- 
cal species switches from heat-driven mass transfer to 
mass-driven mass transfer for N = Pr-l/3Sc 1/3, when 
Pr  >> 1 and N = Sc '/3, when Pr << 1, and not simply 
for N = 1. This result was first recognized in refs. [19- 
21] on the basis of  a simplified scale analysis. In the 
same manner,  Tables 2 and 3 show that the transition 
between heat transfer ruled by thermal convection and 
heat transfer ruled by solutal convection occurs for 
N =  P r - ' S c ,  when Pr >> 1, and N =  p r - 2 S c ,  when 
Pr  << 1. The validity of  our predictions is tested in 
Figs. 6 and 7, where we have represented the wall 
derivatives of  0 and 7.10'(0)1 and I~'(0)1, which scale 
as l/fiT and 1/6c, provide a quantitative way of  testing 
the predictions of  the scale analysis. Numerically, 
0'(0) and 7'(0) are taken at the first interval of  inte- 
gration. The relative error 10'(0)1 and I~'(0)1 is lower 
t h a n  1 0  - 3  . 

Figure 6a is a log-log representation of  10'(0)1 as a 
function of  N P r S c  ~ ; it shows a perfect agreement 
with the predictions reported in Table 2. Provided 
that the ratio S c / P r  is large enough (empty symbols), 
the numerical data fall on a universal curve with a 
very good approximation. When N P r S c - '  << 1, the 
flows are heat-driven, heat transfer is governed 
entirely by thermal convection and 10'(0)l does not  
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depend on N,  Pr  and So. As Pr  increases, the points 
calculated numerically tend towards the same limit as 
in pure thermal convection for N = 0 and 
P r =  oc(10'(0)l =0.503 [24]). When N P r S c  ~>> I, 
the points are located on a straight line with a slope 
I,/4, in agreement with the result of the scale analysis. 
The cross-over between these two domains of  vari- 
ations, around N P r S c  I = 1, is fairly narrow. In Fig. 

6a, we have also reported numerical results obtained 
for Sc = Pr,  i.e. when the asymptotic limit Sc >> Pr  is 
not satisfied ( full symbols). We note that the scaling 
established on the basis of  Pr << Sc still holds when 
N P r S c  ~<< 1: this comes from the fact that heat 
transfer is governed by thermal convection so that it 
does not depend on the relative efficiency of  heat and 
mass diffusion. When N P r S c  ~>> 1, the points 
obtained for S o =  Pr fall on a straight line which is 
parallel, but not superimposed on the line obtained 
for Sc >> Pr. In this case, solutal convection dictates 
the velocity field and the heat transfer so that distinct 
prefactors are found depending on the relative import- 
ance of heat and mass diffusion. 

Figure 6b is a log log representation of  the vari- 
ations of  17"(O)[Pr' 3Sc '~ as a t'unction of 
N P r l ~ S c  ~ .  Using this set of  coordinates,  all the 
points fall on a universal curve when the ratio S c / P r  

is large enough (empty symbols). When 
N P r  t 3Sc  ~'~ << 1, the chemical species transfer is gov- 
erned entirely by thermal convection and 
i) , ,(O)[prt3Sc 13 is constant.  When N P r l 3 S c  i ; >> I, 

the points are located on a straight line with a slope 
1/4, in agreement with the result of  the scale analysis. 
It is worth noting that the results for S c =  1000 are 
very close to those expected in the asymptotic limit 
N =  <,, S o =  ~ (17'(0)1 =0.503 when N =  7:. 

S o =  ~,, from ref. [9], p. 53). We have also reported 
data obtained for Pr = Sc ( full dots). They follow the 
scaling established in the limit Pr << Sc,  but the values 
of  the prefactors deserve some attention. 

Indeed, when mass transfer is ruled by thermal con- 
vection (NPr~:3Sc t~ << 1), the coupling between solu- 
tal and thermal effects yields different prefactors for 
Sc = Pr and So>> Pr. On the contrary,  when mass 
transfer depends only on solutal effects 
(NPr~: ,Sc  ~.3>> 1), the prefactors for Pr  = Sc  and 
Pp. << Sc are very close. 

The numerical results obtained for Pr  << I << Sc are 
reported in Fig. 7. They are also in agreement with 
the predictions of  the scale analysis, and the same 
comments  as previously given can be made concerning 
the position of  the cross-overs, the scaling variations, 
and the existence and the values of  the prefactors 
which compare quite well with the limits obtained in 
single-diffusive convection. Figure 7a is a l o ~ l o g  plot 
of  [O'(O)[Pr ~4 vs N P r 2 S c  i. Heat transfer switches 
from heat transfer ruled by thermal convection to heat 
transfer by mass convection around N P r 2 S c  ' =  1. 

Below the cross-over, the heat transfer scales as in 
pure thermal convection, just as predicted. The data 
calculated for Pr  = 10 ~ are close to the asymptotic 
limit IO'(O)lPr ~4= 0.600 obtained for N = 0 and 
Pr = 0 (ref. [9], p. 53) : we also checked that the data 
calculated for Pr  = 0.1, Pr  = 0.01 coincide with the 
values found in pure thermal convection, i.e. they do 
not depend on the Schmidt number.  Above the cross- 
over, the points fall on a straight line with a slope 1/4 
as predicted. Figure 7b represents the variations of 
[7,(O)[pr~4Sc t/3 as a function of  N S c  v3 in double- 

logarithmic coordinates. The agreement with the pre- 
dictions reported in Table 3 is very good. We have 
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also reported data which are obtained for Sc = 1, i.e. 
outside the domain of  validity for our predictions (full 
dots). The points form a curve which is parallel to the 
variations found for Sc >> 1 ; it is worth noting that 
for NSc-z/3 > 1, the data are in excellent agreement 
with pure solutal convection at Sc = 1 and, again, 
they do not depend on the Prandtl  number. 

that might be useful in interpreting double-diffusive 
convection in more complex geometries. 
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6. CONCLUDING REMARKS 

Through the combined use of  scale analysis and 
integral equations, the method developed here reveals 
new and meaningful features of  double-diffusive con- 
vection. Our analysis makes it possible to derive sys- 
tematically the different asymptotic flow con- 
figurations occurring in the vicinity of  a vertical side 
wall in the presence of  horizontal temperature and 
concentration gradients. Some of these flow con- 
figurations refer to degenerate situations in the sense 
that only two length scales are involved, exactly as in 
single-diffusive convection, but in general scale analy- 
sis relies on at least three length scales. 

Some of the results presented in this work were 
already known from past literature, in particular those 
concerning the mass transfer coefficients at the wall 
[19-21]. They have been recovered easily by our analy- 
sis, their domain of  validity has been assessed with 
precision and they have been completed by additional 
results concerning the temperature and velocity dis- 
tributions. In addition, we have predicted several new 
behaviours which had never been considered before 
and we have got exhaustive predictions of  the velocity, 
temperature and concentrations fields as a function of  
buoyancy forces and diffusivities. Each solution is 
characterized by several scaling relations involving a 
set of  length and velocity scales following from 
x[Rav(x)] i/4 and ~[RaT(x)]l/2/x through factors 
depending on N, Pr and Sc. These solutions are valid 
for asymptotically large or small N, Pr and Sc values, 
but our numerical study shows that the cross-overs 
between the different flows are fairly narrow, thus 
making our predictions suitable for practical 
purposes. Our most striking result deals with the exis- 
tence of  flows which are driven entirely by the tem- 
perature field, even though solutal forces are much 
greater than thermal forces. 

At this point, it would be interesting to compare 
our predictions with experimental investigations. 
Unfortunately,  only few experimental results can be 
found in the literature. Those available have focused 
on the measurements of  mass transfer coefficients and 
concern only flows of  type 2 [5, 6] ; the data fit our 
prediction quite well. In view of  this, we think that 
carefully designed experiments or numerical simu- 
lations covering a wide range of  Prandtl  and Schmidt 
numbers would be useful in the near future. Finally, 
al though our method is simplified in comparison with 
real flows, its advantage is that it can be treated ana- 
lytically, and we hope that it provides new insight 
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A P P E N D I X  

Derivation o/equations (4) 
Let us first express momentum conservation in sublayers 
[0, fiT] and [/it, 6~] using relation (2a). The velocity derivatives 
in 0, /i(. and 6v are: (Pu/?y)o ~ Uc//ic, (~u/?y),,, ~(U,  - 
U{)/(/iv-/ic) and (~u/?)%, = 0. The integrals of ther- 
mal buoyancy in [0,6v] and [/ic, 6v] scale as gfi~AT/i~ 
and gflTAT(/ir-/ic), respectively; the integral of solutal 
buoyancy between 0 and /ic varies as gflc ACN/Ic. In layers 
[0,/iT] and [/i{,, /iv], advection is negligible so that the left- 
hand-side of equation (2a) can be set to zero. Finally, we 
obtain 

l U (  0 ~ ' ~ -  +gf lTAT(/IT+N/I{)  (AI) 
0( 

U j U( 
O ~ - v ~ - - ~  +gflr AT(61 /i(). (A2) 

0 r 0(. 

Equation (AI) gives directly equation (4a). Alter sub- 
stituting Uc by its expression (4a) into (A2) and keeping the 
leading terms (/ic <</iv), we find equation (4b). It is worth 
noting that relation (A1) cannot be obtained from the local 
conservation equations (1), because u has two different scales 
in [0,/ic] and in [/i{,,/i.~]. On the contrary, equation (A2) can 
be derived from the local equations (1), because u varies 
uniformly in [b{.,/it]. 

Heat conservation in [0,/i,] and chemical species con- 
servation in [0, 6c] are expressed using relations (2b) and 
(2c), which read 

U, 
~ / i { + - - ( ~ - 6 { 0  ~ :~7 (A3) 
X X O I 

I 
8'{6{x ~ D ~ .  IA4) 

Since UT 7> Uc and 6c <</iT, (A3) reduces to equation (4C7. 
Equation (A4) gives directly equation (4d). 

Relations (A1) (A4) make it possible to find U{,, U-,. 6( 
and ~iT, but an additional relation is necessary for deter- 
mining /i. We express that the flow in [/iv,/i] is ruled by a 
balance between inertia and friction, using the local equation 
(la), and we get 

U~ &"T 
- -  -~ v - - .  (A5) 
.y /i 2 

This equation is equivalent to (4e). 

Derivation of  equations (57 
To establish equations (5), we express momentum con- 

servation in sublayers [0, 6v], [/i(, ,6,] and [/iv,/iv] using relation 
(2a), heat conservation in [0,/iT] using equation (2b), and 
chemical species conservation in [0./i(.] using equation (2c). 
These different relations read 

U(. 
0 ~  v S{ +g i l t  AT(/I, + N6( ) (A ' I }  

U, 
0 ~ - v +gfi~ AT(6,-/i{,) (A'2) 

0 , - 6 {  

U~ 
" (6 ] -6 ,7  U, V, ~gf i . rAT( / iT-60  (A'31 

X 

U ( .  /_', 1 
0{ + - - ( / i ,  -- 6{ ) ~ y.~- (A'4) 

X X O I 

L/{ 
Li{. ~ D .  1 . (A'57 

A 0{, 

Equations (A'I) and (A'5) give directly equations (5a) and 
{5e). Equation (A'2) reduces to equation (5b) since/ic << 6,,. 
and (A'4) to equation (5d) since/i( << ,5] and Uc <~ U,. Owing 
to incompressibility, we have : V, ~ U~/i~,/x ; substituting into 
(A'3) and keeping only the leading terms (/iT >> Q), leads to 
relation (5c). 

Derivation ~]'equations (5') 
We apply equation (2a) to layers [0,/i(] and [,6,,/i], equa- 

tion (2b) to [0,/iT] and equation (2c) to [0,/ic] 

Uc 
0 ~  - v = -  +gl~vAT(l+N)/ i{  (A"I) 

U-" 
- ~ ( / i  I - - - / i , ) - -  U~ V~ ~g [3 rA T (6 r - / i , .  ) (A"2) 
X 

L'{ /i~ I 
+ t/ ' / i t  ~ ~ (A"37 

.r x 6~ 

(J'{' #,{ ~ O 1 . (A'4} 
X 0{, 

Equations (A"I), (A"37 and (A'4) give directly equations 
5'a), (5'c) and (5'd). From incompressibility, we deduce 

that: V, ~ Uv/i,/x; substituting into equation (A"2) and 
using the inequality 6T <</i,., expression (A"2) simplifies into 
equation (5'b). Finally, the balance between friction and 
inertia in layer [/ic,/i,,] dictates that 

6,'~ U{. 
~ . (A"5) 

x (6 , - / i{)  2 

Since {5, << 6,, equation (A"5) gives equation (5'e). 


